Two Glycerol-3-Phosphate Dehydrogenases from Have Distinct Roles in Lipid Metabolism.

Plant Physiol

School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, United Kingdom

Published: August 2017

The metabolism of glycerol-3-phosphate (G3P) is important for environmental stress responses by eukaryotic microalgae. G3P is an essential precursor for glycerolipid synthesis and the accumulation of triacylglycerol (TAG) in response to nutrient starvation. G3P dehydrogenase (GPDH) mediates G3P synthesis, but the roles of specific GPDH isoforms are currently poorly understood. Of the five GPDH enzymes in the model alga , and were shown to be induced by nutrient starvation and/or salt stress. Heterologous expression of GPD2, a putative chloroplastic GPDH, and GPD3, a putative cytosolic GPDH, in a yeast Δ mutant demonstrated the functionality of both enzymes. knockdown mutants for and showed no difference in growth but displayed significant reduction in TAG concentration compared with the wild type in response to phosphorus or nitrogen starvation. Overexpression of and in gave distinct phenotypes. overexpression lines showed only subtle metabolic phenotypes and no significant alteration in growth. In contrast, overexpression lines displayed significantly inhibited growth and chlorophyll concentration, reduced glycerol concentration, and changes to lipid composition compared with the wild type, including increased abundance of phosphatidic acids but reduced abundance of diglycerides, triglycerides, and phosphatidylglycerol lipids. This may indicate a block in the downstream glycerolipid metabolism pathway in overexpression lines. Thus, lipid engineering by GPDH modification may depend on the activities of other downstream enzyme steps. These results also suggest that GPD2 and GPD3 GPDH isoforms are important for nutrient starvation-induced TAG accumulation but have distinct metabolic functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543956PMC
http://dx.doi.org/10.1104/pp.17.00491DOI Listing

Publication Analysis

Top Keywords

overexpression lines
12
nutrient starvation
8
gpdh isoforms
8
compared wild
8
wild type
8
gpdh
7
glycerol-3-phosphate dehydrogenases
4
dehydrogenases distinct
4
distinct roles
4
roles lipid
4

Similar Publications

SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression.

Invest Ophthalmol Vis Sci

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.

Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).

Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.

View Article and Find Full Text PDF

Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.

View Article and Find Full Text PDF

Background/purpose: Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy.

Materials And Methods: Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells.

View Article and Find Full Text PDF

Rice glycosyltransferase OsDUGT1 is involved in heat stress tolerance by glycosylating flavonoids and regulating flavonoid metabolism.

Front Plant Sci

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

One significant environmental element influencing the growth and yield of rice ( L.) is high temperature. Nevertheless, the mechanism by which rice responds to high temperature is not fully understood.

View Article and Find Full Text PDF

Introduction: Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors in oral and maxillofacial region. The development of new chemotherapy agents and new drug combinations may improve patient survival and quality of life, but both surgery and radiotherapy have significant functional side effects and drug resistance, ultimately resulting in a 5-year survival rate of no more than 60% for OSCC patients. Studies have shown that Brucea javanica oil (BJO) extracts have anti-cancer effects against a variety of cancers, but little research has been reported on OSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!