Protein arginine methyltransferase 7 (PRMT7) catalyzes the introduction of monomethylation marks at the arginine residues of substrate proteins. PRMT7 plays important roles in the regulation of gene expression, splicing, DNA damage, paternal imprinting, cancer and metastasis. However, little is known about the interaction partners of PRMT7. To address this, we performed yeast two-hybrid screening of PRMT7 and identified argininosuccinate synthetase (ASS1) as a potential interaction partner of PRMT7. We confirmed that PRMT7 directly interacts with ASS1 using pull-down studies. ASS1 catalyzes the rate-limiting step of arginine synthesis in urea cycle and citrulline-nitric oxide cycle. We mapped the interface of PRMT7-ASS1 complex through computational approaches and validated the predicted interface in vivo by site-directed mutagenesis. Evolutionary analysis revealed that the ASS1 residues important for PRMT7-ASS1 interaction have co-evolved with PRMT7. We showed that ASS1 mutations linked to type I citrullinemia disrupt the ASS1-PRMT7 interaction, which might explain the molecular pathogenesis of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2017.05.026DOI Listing

Publication Analysis

Top Keywords

prmt7
8
interacts ass1
8
ass1
6
interaction
5
prmt7 interacts
4
ass1 citrullinemia
4
citrullinemia mutations
4
mutations disrupt
4
disrupt interaction
4
interaction protein
4

Similar Publications

Protein arginine methyltransferase 7 (PRMT7) is an essential epigenetic and post-translational regulator in eukaryotic organisms. Dysregulation of PRMT7 is intimately related to multiple types of human diseases, particularly cancer. In addition, PRMT7 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, making it as a promising target for anti-tumor therapeutics.

View Article and Find Full Text PDF

Background: PRMT7 is upregulated in breast cancer and promotes tumor metastasis. Here we aimed to explore the function and mechanism of PRMT7 in triple-negative breast cancer (TNBC).

Methods: The expression of PRMT7, METTL3 and IGF2BP1 was detected by immunohistochemistry (IHC), qRT-PCR and western blot.

View Article and Find Full Text PDF

PRMT7 in cancer: Structure, effects, and therapeutic potentials.

Eur J Med Chem

February 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China. Electronic address:

Protein arginine methyltransferase 7 (PRMT7), a type III methyltransferase responsible solely for arginine mono-methylation, plays a critical role in numerous physiological and pathological processes. Recent studies have highlighted its aberrant expression or mutation in various cancers, implicating it in tumorigenesis, cancer progression, and drug resistance. Consequently, PRMT7 has emerged as a promising target for cancer diagnosis and therapeutic intervention.

View Article and Find Full Text PDF

Targeting PRMT7-mediated monomethylation of MAVS enhances antiviral innate immune responses and inhibits RNA virus replication.

Proc Natl Acad Sci U S A

November 2024

State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.

RIG-I-like receptors (RLRs)-mitochondrial antiviral signaling protein (MAVS) are crucial for type I interferon (IFN) signaling pathway and innate immune responses triggered by RNA viruses. However, the regulatory molecular mechanisms underlying RNA virus-activated type I IFN signaling pathway remain incompletely understood. Here, we found that protein arginine methyltransferase 7 (PRMT7) serves as a negative regulator of the type I IFN signaling pathway by interacting with MAVS and catalyzing monomethylation of arginine 232 (R232me1) in MAVS.

View Article and Find Full Text PDF

Methylation and phosphorylation of formin homology domain proteins (Fhod1 and Fhod3) by protein arginine methyltransferase 7 (PRMT7) and Rho kinase (ROCK1).

J Biol Chem

November 2024

Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA. Electronic address:

Protein post-translational modifications (PTMs) can regulate biological processes by altering an amino acid's bulkiness, charge, and hydrogen bonding interactions. Common modifications include phosphorylation, methylation, acetylation, and ubiquitylation. Although a primary focus of studying PTMs is understanding the effects of a single amino acid modification, the possibility of additional modifications increases the complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!