Due to the epidemic of obesity across the world, nonalcoholic fatty liver disease (NAFLD) has become one of the most prevalent chronic liver disorders in children and adolescents. NAFLD comprises a spectrum of fat-associated liver conditions that can result in end-stage liver disease and the need for liver transplantation. Simple steatosis, or fatty liver, occurs early in NAFLD and may progress to nonalcoholic steatohepatitis, fibrosis and cirrhosis with increased risk of hepatocellular carcinoma. The mechanism of the liver injury in NAFLD is currently thought to be a "multiple-hit process" where the first "hit" is an increase in liver fat, followed by multiple additional factors that trigger the inflammatory activity. At the onset of disease, NAFLD is characterized by hepatic triglyceride accumulation and insulin resistance. Liver fat accumulation is associated with increased lipotoxicity from high levels of free fatty acids, free cholesterol and other lipid metabolites. As a consequence, mitochondrial dysfunction with oxidative stress and production of reactive oxygen species and endoplasmic reticulum stress-associated mechanisms, are activated. The present review focuses on the relationship between intra-cellular lipid accumulation and insulin resistance, as well as on lipid and lipoprotein metabolism in NAFLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483621PMC
http://dx.doi.org/10.3390/children4060046DOI Listing

Publication Analysis

Top Keywords

fatty liver
12
liver disease
12
liver
10
lipid lipoprotein
8
lipoprotein metabolism
8
disease nafld
8
liver fat
8
accumulation insulin
8
insulin resistance
8
nafld
6

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the presence of at least one cardiovascular disease (CVD) risk factor, underscoring its potential to elevate CVD risk in affected individuals. However, evidence linking MASLD to subclinical coronary atherosclerosis remains scarce, and further investigations are necessary to elucidate the independent role of varying MASLD severities as a CVD risk factor.

Methods: This study analyzed 7,507 participants aged ≥ 40 who underwent comprehensive health evaluations at the Shanghai Health and Medical Center.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated.

View Article and Find Full Text PDF

This study investigates the impact of maternal gestation diets with varying fiber contents on gene expression and chromatin accessibility in fetuses and piglets fed a low fiber diet post weaning. High-fiber maternal diets, enriched with sugar beet pulp or pea internal fiber, were compared to a low-fiber maternal diet to evaluate their effects on liver and muscle tissues. The findings demonstrate that maternal high-fiber diets significantly alter chromatin accessibility, predicted transcription factor activity and transcriptional landscape in both fetuses and piglets.

View Article and Find Full Text PDF

Lipid droplet targeting of the lipase co-activator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis.

J Biol Chem

January 2025

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

OTUB1 mediates PARP1 deubiquitination to alleviate NAFLD by regulating HMGB1.

Exp Cell Res

January 2025

Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China; Department of Gastroenterology, Ningyuan County People's Hospital, Yongzhou City, 425600, Hunan province, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease characterized by hepatocyte steatosis, which excludes alcohol, drugs and other definite liver damage-related factors. It has been reported that OTUB1 serves a significant role in the regulation of glucose and lipid metabolism. The present study aimed to investigate the molecular mechanism underlying the effect of OTUB1 on regulating NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!