Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs which regulate diverse molecular and biochemical processes at a post-transcriptional level in plants. As the ancestor of domesticated wheat, wild emmer wheat ( ssp. ) has great genetic potential for wheat improvement. However, little is known about miRNAs and their functions on salinity stress in wild emmer. To obtain more information on miRNAs in wild emmer, we systematically investigated and characterized the salinity-responsive miRNAs using deep sequencing technology. A total of 88 conserved and 124 novel miRNAs were identified, of which 50 were proven to be salinity-responsive miRNAs, with 32 significantly up-regulated and 18 down-regulated. miR172b and miR1120a, as well as mi393a, were the most significantly differently expressed. Targets of these miRNAs were computationally predicted, then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the targets of salinity-responsive miRNAs were enriched in transcription factors and stress-related proteins. Finally, we investigated the expression profiles of seven miRNAs ranging between salt-tolerant and sensitive genotypes, and found that they played critical roles in salinity tolerance in wild emmer. Our results systematically identified the salinity-responsive miRNAs in wild emmer, not only enriching the miRNA resource but also laying the foundation for further study on the biological functions and evolution of miRNAs in wild wheat and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485520 | PMC |
http://dx.doi.org/10.3390/genes8060156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!