A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-Wide Identification and Characterization of Salinity Stress-Responsive miRNAs in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides). | LitMetric

Genome-Wide Identification and Characterization of Salinity Stress-Responsive miRNAs in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides).

Genes (Basel)

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China.

Published: June 2017

MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs which regulate diverse molecular and biochemical processes at a post-transcriptional level in plants. As the ancestor of domesticated wheat, wild emmer wheat ( ssp. ) has great genetic potential for wheat improvement. However, little is known about miRNAs and their functions on salinity stress in wild emmer. To obtain more information on miRNAs in wild emmer, we systematically investigated and characterized the salinity-responsive miRNAs using deep sequencing technology. A total of 88 conserved and 124 novel miRNAs were identified, of which 50 were proven to be salinity-responsive miRNAs, with 32 significantly up-regulated and 18 down-regulated. miR172b and miR1120a, as well as mi393a, were the most significantly differently expressed. Targets of these miRNAs were computationally predicted, then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the targets of salinity-responsive miRNAs were enriched in transcription factors and stress-related proteins. Finally, we investigated the expression profiles of seven miRNAs ranging between salt-tolerant and sensitive genotypes, and found that they played critical roles in salinity tolerance in wild emmer. Our results systematically identified the salinity-responsive miRNAs in wild emmer, not only enriching the miRNA resource but also laying the foundation for further study on the biological functions and evolution of miRNAs in wild wheat and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485520PMC
http://dx.doi.org/10.3390/genes8060156DOI Listing

Publication Analysis

Top Keywords

wild emmer
24
mirnas wild
16
salinity-responsive mirnas
16
mirnas
12
emmer wheat
8
emmer systematically
8
wild
7
emmer
6
wheat
5
genome-wide identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!