Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.05.052 | DOI Listing |
Results Chem
December 2024
Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA.
In this study, the copper(II) complex [Cu(chromoneTSC)Cl]•0.5HO•0.0625CHOH (where chromoneTSC = -Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out studies in combination with berberine chloride (BBC).
View Article and Find Full Text PDFBJS Open
December 2024
Institute of Cardiovascular Sciences, University College London, London, UK.
Background: While most thyroid nodules are benign, 7-15% are malignant. Patients with indeterminate thyroid nodules (specifically Bethesda IV/Thy3f) often undergo diagnostic hemithyroidectomy to reach a diagnosis on final histology. The aim of this study was to assess the feasibility of circulating large extracellular vesicles as diagnostic biomarkers in patients presenting with Thy3f thyroid nodules.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
Genomic imprinting, the parent-of-origin-specific gene expression, plays a pivotal role in growth regulation and is often dysregulated in cancer. However, screening for imprinting is complicated by its cell-type specificity, which bulk RNA-seq cannot capture. On the other hand, large-scale single-cell RNA-seq (scRNA-seq) often lacks transcript-level detail and is cost-prohibitive.
View Article and Find Full Text PDFEClinicalMedicine
December 2024
Department of Pathology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Hokkaido, Japan.
Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.
Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).
While the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!