Physical insights into the blood-brain barrier translocation mechanisms.

Phys Biol

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.

Published: June 2017

The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1478-3975/aa708aDOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
translocation mechanisms
8
drug therapies
8
physical insights
4
insights blood-brain
4
barrier translocation
4
mechanisms number
4
number individuals
4
individuals suffering
4
suffering diseases
4

Similar Publications

Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.

View Article and Find Full Text PDF

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

CNS lymphoma is a rare form of non-Hodgkin lymphoma that primarily affects the brain, spinal cord, leptomeninges, or eyes, leading to severe neurological or ophthalmological complications. This case report details a 44-year-old male with human immunodeficiency virus and diffuse large B-cell lymphoma who experienced permanent vision loss due to optic perineuritis, a rare presenting symptom indicative of underlying CNS involvement. Despite previous remission, imaging revealed focal enhancements suggesting CNS lymphoma, highlighting diagnostic and management challenges in relapsed lymphoma, especially in immunocompromised patients.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.

View Article and Find Full Text PDF

The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!