Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor LiMgPON was synthesized by ion exchange from a NaMgPON precursor. Impedance spectroscopy measurements indicate that LiMgPON has a room temperature Li-ion conductivity of about 10 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of NaMgPON at this temperature. The structure of LiMgPON was determined from ex situ synchrotron and time-of-flight neutron diffraction data to retain the P23 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of NaMgPON. The two Li-ion sites are found to be very substantially displaced (∼0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare LiMgPON produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li/Na ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a NaLiMgPON solid solution (stage 1) followed by a two-phase reaction (stage 2) to form LiMgPON. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. In addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b02323DOI Listing

Publication Analysis

Top Keywords

ion exchange
24
neutron diffraction
16
situ neutron
8
diffraction data
8
lattice parameter
8
exchange reaction
8
contents stage
8
ion
6
exchange
6
limgpon
6

Similar Publications

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.

Adv Sci (Weinh)

January 2025

Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.

Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Ion exchange chromatography of biotherapeutics: Fundamental principles and advanced approaches.

J Chromatogr A

January 2025

School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland. Electronic address:

Ion exchange chromatography (IEX) is an important analytical technique for the characterization of biotechnology-derived products, such as monoclonal antibodies (mAbs) and more recently, cell and gene therapy products such as messenger ribonucleic acid (mRNA) and adeno-associated viruses (AAVs). This review paper first outlines the basic principles and separation mechanisms of IEX for charge variant separation of biotherapeutics, and examines the different elution modes based on salt or pH gradients. It then highlights several recent trends when applying IEX for the characterization of biotechnology-derived products, including: i) the effective use of pH gradients, ii) the improvement of selectivity by using organic solvents in the mobile phase, multi-step gradients, or by combining ion pairing and ion exchange, and iii) the increase in analytical throughput using ultra-short columns or automated screening of conditions.

View Article and Find Full Text PDF

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!