Background And Objective: Pressure ulcers (PU) are a significant problem facing the health system in the United States. Here, we present preliminary case studies demonstrating feasibility of Spatial Frequency Domain Imaging (SFDI) to assess skin status in high-risk populations and pre-existing wounds. SFDI is a wide-field non-contact optical imaging technology that uses structured light to obtain tissue optical properties and of tissue constituents. This study aims to determine the fit of SFDI for PU care and determine the next steps.
Study Design/materials And Methods: Patients at risk for pressure ulcers were imaged using a near-infrared SFDI system. SFDI-derived images of tissue function (tissue hemoglobin, tissue oxygen saturation) and structure (tissue scattering) were then compared to each other as well as a blinded dermatologist's clinical impressions.
Results: Four case series were chosen to demonstrate the imaging capability of this technology. The first scenario demonstrates normal skin of three patients without skin breakdown with spatially uniform measures of tissue oxygen saturation, scattering, and blood volume. The second scenario demonstrates a stage II PU; the third case shows non-blanchable erythema of an unstageable PU; a fourth scenario is a clinically indistinguishable skin rash versus early stages of a PU. In all these cases, we observe spatial changes in tissue constituents (decrease in tissue oxygen saturation, increased blood pooling, decreased scattering).
Conclusion: We have presented the first use of SFDI for pressure ulcer imaging and staging. This preliminary study demonstrates the feasibility of this optical technology to assess tissue oxygen saturation and blood volume status in a quantitative manner. With the proposed improvements in modeling and hardware, SFDI has potential to provide a means for pressure ulcer risk stratification, healing and staging. Lasers Surg. Med. 49:827-834, 2017 © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lsm.22692 | DOI Listing |
In Vitro Model
February 2024
Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan.
Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.
Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.
View Article and Find Full Text PDFInt J Biomater
January 2025
Iranian Center for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Urology, Beilun People's Hospital, Ningbo, Zhejiang, China.
Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade Estadual do Ceará Instituto Superior de Ciências Biomédicas Laboratório de Fisiologia Endócrina e Metabolismo FortalezaCE Brasil Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil.
Objective: This study aimed to investigate the redox balance in subcutaneous and retroperitoneal fat pads of male and female Wistar rats.
Materials And Methods: The study analyzed the activity and gene expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, along with the production of NADPH oxidases dependent on HO and gene expression of NOX1, NOX2, and NOX4.
Results: The retroperitoneal fat pad in males compared with females had greater NOX2 and NOX4 expression, along with higher superoxide dismutase activity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!