Deterministic trapping, encapsulation and retrieval of single-cells.

Lab Chip

Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.

Published: June 2017

We present a novel method for conducting true single-cell encapsulation at very high efficiency for the manipulation of precious samples. Our unique strategy is based on the sequential capture and original encapsulation of single-cells into a series of hydrodynamic traps. We identified two distinct modes of encapsulation and we established their associated design rules. We improved the trapping scheme to reach a near perfect capture efficiency and make it compatible with the encapsulation process. Finally, we developed the complete device operation that permits highly efficient single-cell encapsulation and droplet retrieval. This platform provides the foundation to a fully integrated multiparameter platform that will impact the analysis of tissues at single-cell resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541261PMC
http://dx.doi.org/10.1039/c7lc00283aDOI Listing

Publication Analysis

Top Keywords

single-cell encapsulation
8
encapsulation
6
deterministic trapping
4
trapping encapsulation
4
encapsulation retrieval
4
retrieval single-cells
4
single-cells novel
4
novel method
4
method conducting
4
conducting true
4

Similar Publications

Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications.

J Mater Chem B

January 2025

State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Efficient in-droplet cell culture and cytomechanics measurement for assessment of human cellular responses to alcohol.

Anal Chim Acta

February 2025

Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China. Electronic address:

Background: Excessive alcohol consumption poses a significant threat to human health, leading to cellular dehydration, degeneration, and necrosis. Alcohol-induced cellular damage is closely linked to alterations in cellular mechanical properties. However, characterizing these changes following alcohol-related injury remains challenging.

View Article and Find Full Text PDF

Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.

View Article and Find Full Text PDF

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!