Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reaction of methyl chloride with the hydroxyl radical OH is an important process in the troposphere. The kinetics of this reaction has been thoroughly studied in the gas phase, both experimentally and theoretically, but little is known about the effect of water on this reaction. In particular, investigating the reaction mechanism at the air-water interface is key in order to better understand the role of cloud water droplets and aerosols on the overall oxidation capacity of the troposphere. In this work, we have implemented a "rare event" approach combined to QM/MM (quantum mechanics and molecular mechanics) molecular dynamics simulations to investigate the dynamics of the H-abstraction reaction CH Cl+OH→CH Cl+H O at the air-water interface. For comparison, high-level ab initio calculations for the reaction mechanism in the gas phase are also reported and accurate kinetic constants at different temperatures are provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!