High-level, acute exposures to individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures result in cardiac abnormalities in developing fish embryos. Whereas acute PAH exposures can be developmentally lethal, little is known about the later life consequences of early life, lower level PAH exposures in survivors. A population of PAH-adapted Fundulus heteroclitus from the PAH-contaminated Superfund site, Atlantic Wood Industries, Elizabeth River, Portsmouth, Virginia, United States, is highly resistant to acute PAH cardiac teratogenicity. We sought to determine and characterize long-term swimming performance and cardiac histological alterations of a subteratogenic PAH mixture exposure in both reference killifish and PAH-adapted Atlantic Wood killifish embryos. Killifish from a relatively uncontaminated reference site, King's Creek, Virginia, United States, and Atlantic Wood killifish were treated with dilutions of Elizabeth River sediment extract at 24 h post fertilization (hpf). Two proven subteratogenic dilutions, 0.1 and 1.0% Elizabeth River sediment extract (total PAH 5.04 and 50.4 µg/L, respectively), were used for embryo exposures. Then, at 5-mo post hatching, killifish were subjected to a swim performance test. A separate subset of these individuals was processed for cardiac histological analysis. Unexposed King's Creek killifish significantly outperformed the unexposed Atlantic Wood killifish in swimming performance as measured by Ucrit (i.e., critical swimming speed). However, King's Creek killifish exposed to Elizabeth River sediment extract (both 0.1 and 1.0%) showed significant declines in Ucrit. Histological analysis revealed the presence of blood in the pericardium of King's Creek killifish. Although Atlantic Wood killifish showed baseline performance deficits relative to King's Creek killifish, their pericardial cavities were nearly free of blood and atrial and ventricular alterations. These findings may explain, in part, the diminished swimming performance of King's Creek fish. Environ Toxicol Chem 2017;36:3246-3253. © 2017 SETAC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942201 | PMC |
http://dx.doi.org/10.1002/etc.3877 | DOI Listing |
Plant Dis
December 2024
Clemson University - EREC, Plant and Environmental Sciences, 64 Research Road, Blackville, South Carolina, United States, 29817;
Glossy abelia (Abelia × grandiflora) is an evergreen ornamental shrub used in landscaping globally. From Jun. 2023 to Feb.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States.
Environmental contaminants pose a significant selection pressure across taxa, potentiating evolved resistance to chemicals. However, rapid evolution may alter molecular and physiological homeostasis leading to trade-offs. To elucidate molecular underpinnings of evolved chemical resistance, we compared liver gene expression and methylation profiles in polycyclic aromatic hydrocarbon (PAH)-adapted Atlantic killifish () in the Republic site (RP), Elizabeth River, Virginia with PAH-sensitive Kings Creek (KC) fish.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
Water Res
November 2024
Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
Urban stormwater management systems, particularly storm sewers, are critical for managing runoff in urban areas. These systems are designed to function during wet weather events; however, field-based observations of these systems suggest that they may also be active flow pathways in dry weather conditions, ultimately contributing to streamflow. Unlike dry weather flow in wastewater systems, storm sewer dry weather flow has not been thoroughly explored.
View Article and Find Full Text PDFJ Allergy Clin Immunol
November 2024
IgGenix, Inc, South San Francisco, Calif.
Background: Existing therapeutic strategies are challenged by long times to achieve effect and often require frequent administration. Peanut-allergic individuals would benefit from a therapeutic that provides rapid protection against accidental exposure within days of administration while carrying little risk of adverse reactions.
Objective: Guided by the repertoire of human IgE mAbs from allergic individuals, we sought to develop a treatment approach leveraging the known protective effects of allergen-specific IgG4 antibodies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!