Building a complex structure system of conductive polymers without a complicated fabricating process is a long-awaited goal to improving the functional photoresponse properties of conductive polymers. In this study, we demonstrate that the photoresponse of polypyrrole (PPy)-based photodetector devices with an ultrathin polymer layer can be chemically modulated by simply immersing the devices into an alkaline solution. After alkaline treatment, the pyrrole unit transforms into a quinoid structure. Characteristics of current-voltage reveal an increased photosensitivity with several orders of magnitude when decreasing the applied bias voltage. Furthermore, ultrathin PPy belts with a width of 100 nm exhibit ultra-high photosensitivites of roughly 1000 (unit) and photoresponsivities of 54.3 A W due to the high surface area ratio of the nanobelts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr07143k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!