Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion, but the mechanisms underlying insulin secretion failure are not completely understood. Here, we show that a set of co-expressed genes, which is enriched for genes with islet-selective open chromatin, is associated with T2D. These genes are perturbed in T2D and have a similar expression pattern to that of dedifferentiated islets. We identify Sox5 as a regulator of the module. Sox5 knockdown induces gene expression changes similar to those observed in T2D and diabetic animals and has profound effects on insulin secretion, including reduced depolarization-evoked Ca-influx and β-cell exocytosis. SOX5 overexpression reverses the expression perturbations observed in a mouse model of T2D, increases the expression of key β-cell genes and improves glucose-stimulated insulin secretion in human islets from donors with T2D. We suggest that human islets in T2D display changes reminiscent of dedifferentiation and highlight SOX5 as a regulator of β-cell phenotype and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467166 | PMC |
http://dx.doi.org/10.1038/ncomms15652 | DOI Listing |
Function (Oxf)
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFJ Endocrinol
January 2025
N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan.
Purpose: Imeglimin is a novel oral antidiabetic agent that improves glucose tolerance. This study aimed to investigate the efficacy of combining imeglimin with dipeptidyl peptidase-4 inhibitor (DPP-4i), the most frequently prescribed first-line treatment for patients with type 2 diabetes (T2D) in Japan, to improve glycemic control.
Patients And Methods: Eleven patients with T2D treated with DPP-4i alone (6.
Diabetes Obes Metab
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aims: To compare the probability of achieving diabetes remission in individuals with different phenotypes of insulin sensitivity, insulin secretion, and beta cell function and further detect the effects of diet, exercise, and lifestyle education intervention on these indexes.
Methods: Three-hundred and one participants who had glycated haemoglobin (HbA1c) data at baseline and after intervention were included for this post hoc analysis. We used the multi-way analysis of variance to assess the differences between the diabetes remission and non-remission groups or between intervention groups in changes of the indexes of insulin sensitivity, insulin secretion, and beta cell function.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!