Microstructure and chemical constitution are important factors affecting the biological activity of biomaterials. This study aimed to fabricate hydroxyapatite (HAp) particles with both micro/nanohybrid structure and Cu doping to promote osteogenic differentiation and antibacterial property. In the presence of inositol hexakisphosphate (IP6), micro/nano-structured and Cu-doped HAp (HAp-IP6-Cu) microspheres were successfully fabricated via hydrothermal method. Morphological observation showed that HAp-IP6-Cu microspheres with a diameter of 3.1-4.1 μm were chrysanthemum-like and composed of nano-flakes approximately 50 nm in thickness. Compared with the HAp micro-rods or IP6 modified HAp (HAp-IP6) microspheres, HAp-IP6-Cu microspheres had a larger specific surface area, better hydrophilicity and stronger ability to adsorb bovine serum albumin. To evaluate the synergistic effects of micro/nanohybrid structure and Cu on cell behavior, rat calvarial osteoblasts (RCOs) were cultured on HAp-IP6-Cu, HAp-IP6 and HAp layers as well as their extracts, respectively. Results demonstrated that HAp-IP6-Cu layer promoted the adhesion, proliferation and osteogenic differentiation of RCOs. The cells grew on HAp-IP6-Cu and HAp-IP6 layers exhibited greater spreading than those on HAp layer. In addition, quantitative test by the agar disk diffusion technique found that HAp-IP6-Cu microspheres were effectively against S taphylococcus aureus and E scherichia coli. These results demonstrated that HAp-IP6-Cu microspheres may be a potential candidate as a bioactive and anti-infective biomaterial for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/aa6c8d | DOI Listing |
Biomed Mater
June 2017
Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
Microstructure and chemical constitution are important factors affecting the biological activity of biomaterials. This study aimed to fabricate hydroxyapatite (HAp) particles with both micro/nanohybrid structure and Cu doping to promote osteogenic differentiation and antibacterial property. In the presence of inositol hexakisphosphate (IP6), micro/nano-structured and Cu-doped HAp (HAp-IP6-Cu) microspheres were successfully fabricated via hydrothermal method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!