Ultrasound elasticity imaging has demonstrated utility in breast imaging, but it is typically performed with handheld transducers and two-dimensional imaging. Two-dimensional (2D) elastography images tissue stiffness of only a plane and hence suffers from errors due to out-of-plane motion, whereas three-dimensional (3D) data acquisition and motion tracking can be used to track out-of-plane motion that is lost in 2D elastography systems. A commercially available automated breast volume scanning system that acquires 3D ultrasound data with precisely controlled elevational movement of the 1D array ultrasound transducer was employed in this study. A hybrid guided 3D motion-tracking algorithm was developed that first estimated the displacements in one plane using a modified quality-guided search method, and then performed an elevational guided-search for displacement estimation in adjacent planes. To assess the performance of the method, 3D radiofrequency echo data were acquired with this system from a phantom and from an in vivo human breast. For both experiments, the axial displacement fields were smooth and high cross-correlation coefficients were obtained in most of the tracking region. The motion-tracking performance of the new method was compared with a correlation-based exhaustive-search method. For all motion-tracking volume pairs, the average motion-compensated cross-correlation values obtained by the guided-search motion-tracking method were equivalent to those by the exhaustive-search method, and the computation time was about a factor of 10 lesser. Therefore, the proposed 3D ultrasound elasticity imaging method was a more efficient approach to produce a high quality of 3D ultrasound strain image.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643218PMC
http://dx.doi.org/10.1177/0161734617712238DOI Listing

Publication Analysis

Top Keywords

ultrasound elasticity
12
elasticity imaging
12
automated breast
8
breast volume
8
volume scanning
8
scanning system
8
out-of-plane motion
8
performance method
8
exhaustive-search method
8
method
7

Similar Publications

Objective: To investigate integrating an artificial intelligence (AI) system into diagnostic breast ultrasound (US) for improved performance.

Materials And Methods: Seventy suspicious breast mass lesions (53 malignant and 17 benign) from seventy women who underwent diagnostic breast US complemented with shear wave elastography, US-guided core needle biopsy and verified histopathology were enrolled. Two radiologists, one with 15 years of experience and the other with one year of experience, evaluated the images for breast imaging-reporting and data system (BI-RADS) scoring.

View Article and Find Full Text PDF

Thyroid nodules are a common thyroid disorder, and ultrasound imaging, as the primary diagnostic tool, is susceptible to variations based on the physician's experience, leading to misdiagnosis. This paper constructs an end-to-end thyroid nodule detection framework based on YOLOv8, enabling automatic detection and classification of nodules by extracting grayscale and elastic features from ultrasound images. First, an attention-weighted DCN is introduced to enhance superficial feature extraction and capture local information.

View Article and Find Full Text PDF

Background: The advancement in non-invasive methods for diagnosing and characterizing liver disease has achieved significant success. One such methods, FibroScan, combines non-invasiveness, rapidity, painlessness, and reproducibility. However, its accuracy and value are limited in many clinical settings.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus (DM) is a chronic metabolic disorder that increases fragility fracture risk. Conventional DXA-based areal bone mineral density (aBMD) assessments often underestimate this risk. Cortical Backscatter (CortBS) ultrasound, a radiation-free technique, non-invasively analyzes cortical bone's viscoelastic and microstructural properties.

View Article and Find Full Text PDF

Background: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!