Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization.
Materials And Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200) were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change ( = 7). The temperature data were recorded (0.0001 sensible) and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute) were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and Tukey honestly test (α = 0.05).
Results: Significant differences were found among the time points and resin cements ( < 0.05). Temperature values of the Pan SA group were significantly higher than Pan F and RelyX ( < 0.05).
Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450883 | PMC |
http://dx.doi.org/10.4103/jips.jips_327_16 | DOI Listing |
Polymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
E.T.S. de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid (España), 28040 Madrid, Spain.
Polymers are often insulators, but this not a universal intrinsic characteristic of all polymers. For this work, the adhesives used, epoxy and polyurethane, do demonstrate this insulating characteristic. However, there has been significant interest in the development of conductive polymers, specifically adhesives, because of the potential properties and ease of processing of these polymers.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.
The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
Matrix metalloproteinase (MMP)-induced collagen degradation at the resin-dentin interface remains a significant challenge for maintaining the longevity of dental restorations. This study investigated the effects of epigallocatechin-3-gallate (EGCG), a potent MMP inhibitor, on dental adhesive curing efficiency when encapsulated in halloysite nanotubes (HNTs). EGCG-loaded HNTs were incorporated into a commercial dental adhesive (Adper Scotchbond Multi-Purpose) at 7.
View Article and Find Full Text PDFSci Rep
January 2025
Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
The main objective of the current study is to compare short-term fluoride release of three ion releasing restorative materials and assess their inhibitory effect on secondary caries. Materials used in this study included, Self-adhesive hybrid composite (group A), Ion releasing flowable composite liner (group B), and alkasite restorative material (group C). Twenty-two discs were fabricated from each material for short-term fluoride release test, conducted on days 1, 7, and 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!