AxyXY-OprZ is an RND-type efflux system that confers innate aminoglycoside resistance to spp. We investigated here a putative TetR family transcriptional regulator encoded by the gene located upstream of An in-frame gene deletion assay led to increased MICs of antibiotic substrates of the efflux system, including aminoglycosides, cefepime, fluoroquinolones, tetracyclines, and erythromycin, indicating that the product of negatively regulates expression of Moreover, we identified an amino acid substitution at position 29 of AxyZ (V29G) in a clinical strain that occurred during the course of chronic respiratory tract colonization in a cystic fibrosis (CF) patient. This substitution, also detected in three other strains exposed to tobramycin, led to an increase in the transcription level (5- to 17-fold) together with an increase in antibiotic resistance level. This overproduction of AxyXY-OprZ is the first description of antibiotic resistance acquisition due to modification of a chromosomally encoded mechanism in and might have an impact on the management of infected CF patients. Indeed, tobramycin is widely used for aerosol therapy within this population, and we have demonstrated that it easily selects mutants with increased MICs of not only aminoglycosides but also fluoroquinolones, cefepime, and tetracyclines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527583 | PMC |
http://dx.doi.org/10.1128/AAC.00290-17 | DOI Listing |
J Exp Med
February 2025
Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA.
Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure.
View Article and Find Full Text PDFMicroorganisms
December 2024
College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China.
subsp. () is a Gram-negative bacterium responsible for citrus canker, a significant threat to citrus crops. ClpV is a critical protein in the type VI secretion system (T6SS) as an ATPase involved in bacterial motility, adhesion, and pathogenesis to the host for some pathogenic bacteria.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
Background: Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
Aging and apolipoprotein E4 () are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to , disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells, including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate -dependent phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!