Before the 2014 implementation of a new kidney allocation system by the United Network for Organ Sharing, white patients were more likely than black or Hispanic patients to receive a kidney transplant. To determine the effect of the new allocation system on these disparities, we examined data for 179,071 transplant waiting list events in the period June 2013-September 2016, and we calculated monthly transplantation rates (34,133 patients actually received transplants). Implementation of the new system was associated with a narrowing of the disparities in the average monthly transplantation rates by 0.29 percentage point for blacks compared to whites and by 0.24 percentage point for Hispanics compared to whites, which resulted in both disparities becoming nonsignificant after implementation of the new system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681858PMC
http://dx.doi.org/10.1377/hlthaff.2016.1625DOI Listing

Publication Analysis

Top Keywords

allocation system
12
kidney allocation
8
system associated
8
black hispanic
8
hispanic patients
8
monthly transplantation
8
transplantation rates
8
implementation system
8
percentage point
8
compared whites
8

Similar Publications

The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects.

Plants (Basel)

January 2025

Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.

Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane.

View Article and Find Full Text PDF

Minimizing Delay and Power Consumption at the Edge.

Sensors (Basel)

January 2025

Institute of Theoretical & Applied Informatics, Polish Academy of Sciences (IITiS-PAN), 44-100 Gliwice, Poland.

Edge computing systems must offer low latency at low cost and low power consumption for sensors and other applications, including the IoT, smart vehicles, smart homes, and 6G. Thus, substantial research has been conducted to identify optimum task allocation schemes in this context using non-linear optimization, machine learning, and market-based algorithms. Prior work has mainly focused on two methodologies: (i) formulating non-linear optimizations that lead to NP-hard problems, which are processed via heuristics, and (ii) using AI-based formulations, such as reinforcement learning, that are then tested with simulations.

View Article and Find Full Text PDF

This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.

View Article and Find Full Text PDF

Co-Optimization Operation of Distribution Network-Containing Shared Energy Storage Multi-Microgrids Based on Multi-Body Game.

Sensors (Basel)

January 2025

Xi'an Power Supply Company, State Grid Shaanxi Electric Power Co., Ltd., Xi'an 710032, China.

Under the carbon peaking and carbon neutrality target background, efficient collaborative scheduling between distribution networks and multi-microgrids is of great significance for enhancing renewable energy accommodation and ensuring stable system operation. Therefore, this paper proposes a collaborative optimization method for the operation of distribution networks and multi-microgrids with shared energy storage based on a multi-body game. The method is modeled and solved in two stages.

View Article and Find Full Text PDF

Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!