The benthic mucilage producing microalga Chrysophaeum taylorii Lewis and Bryan (Pelagophyceae) has recently received attention for its rapid spread in the Mediterranean Sea, where its blooms have remarkable detrimental effects. So far no information on C. taylorii response to multiple stressors, especially in terms of mucilage hyperproduction, is available in the literature yet, and a manipulative field experiment in this topic was designed in Tavolara Punta Coda Cavallo Marine Protected Area. The aim of the study was to test the effects of nutrient enrichment (addition of nutrients), mechanical disturbance (partial and total benthic organisms removal) and hydrodynamics (increased water turbulence) on C. taylorii cell density and mucilage abundance. To the purpose, the three above mentioned stressors were simulated and the three treatments were assigned to 20 × 20 cm plots following a full-factorial design (n = 3). Interactive effects of the three stressors affected significantly both benthic C. taylorii cell density and mucilage cover although differently. Mechanical disturbance and high hydrodynamics produced consistent effects on cell density and mucilage production (i.e. the former factor enhancing and the latter decreasing). Nutrient enrichment on the contrary led to contrasting effects, promoting cell abundance and inhibiting mucilage production. Therefore, important mucilage blooms are expected in oligotrophic sheltered coastal locations where barren areas are present.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2017.05.005DOI Listing

Publication Analysis

Top Keywords

cell density
16
density mucilage
16
mucilage production
12
microalga chrysophaeum
8
chrysophaeum taylorii
8
mucilage
8
nutrient enrichment
8
mechanical disturbance
8
c taylorii cell
8
cell
5

Similar Publications

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Background: Among hypertensive cohorts across different nations, the relationship between the triglyceride-glucose index (TyG) and its conjunction with obesity metrics in relation to cardiovascular disease (CVD) incidence and mortality remains to be elucidated.

Methods: This study enrolled 9,283, 164,357, and 5,334 hypertensives from the National Health and Nutrition Examination Survey (NHANES), UK Biobank (UKBB), and Shanghai Pudong cohort. The related outcomes for CVD were defined by multivariate Cox proportional hazards models, Generalized Additive Models and Mendelian randomization analysis.

View Article and Find Full Text PDF

Neurons in the hippocampus are correlated with different variables, including space, time, sensory cues, rewards and actions, in which the extent of tuning depends on ongoing task demands. However, it remains uncertain whether such diverse tuning corresponds to distinct functions within the hippocampal network or whether a more generic computation can account for these observations. Here, to disentangle the contribution of externally driven cues versus internal computation, we developed a task in mice in which space, auditory tones, rewards and context were juxtaposed with changing relevance.

View Article and Find Full Text PDF

Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.

View Article and Find Full Text PDF

Satellite DNA shapes dictate pericentromere packaging in female meiosis.

Nature

January 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!