Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish.

Toxicol Appl Pharmacol

Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA. Electronic address:

Published: August 2017

Benzo[a]pyrene (B[a]P) is a well-known genotoxic polycylic aromatic compound whose toxicity is dependent on signaling via the aryl hydrocarbon receptor (AHR). It is unclear to what extent detrimental effects of B[a]P exposures might impact future generations and whether transgenerational effects might be AHR-dependent. This study examined the effects of developmental B[a]P exposure on 3 generations of zebrafish. Zebrafish embryos were exposed from 6 to 120h post fertilization (hpf) to 5 and 10μM B[a]P and raised in chemical-free water until adulthood (F0). Two generations were raised from F0 fish to evaluate transgenerational inheritance. Morphological, physiological and neurobehavioral parameters were measured at two life stages. Juveniles of the F0 and F2 exhibited hyper locomotor activity, decreased heartbeat and mitochondrial function. B[a]P exposure during development resulted in decreased global DNA methylation levels and generally reduced expression of DNA methyltransferases in wild type zebrafish, with the latter effect largely reversed in an AHR2-null background. Adults from the F0 B[a]P exposed lineage displayed social anxiety-like behavior. Adults in the F2 transgeneration manifested gender-specific increased body mass index (BMI), increased oxygen consumption and hyper-avoidance behavior. Exposure to benzo[a]pyrene during development resulted in transgenerational inheritance of neurobehavioral and physiological deficiencies. Indirect evidence suggested the potential for an AHR2-dependent epigenetic route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539966PMC
http://dx.doi.org/10.1016/j.taap.2017.05.033DOI Listing

Publication Analysis

Top Keywords

transgenerational inheritance
12
inheritance neurobehavioral
8
neurobehavioral physiological
8
exposure benzo[a]pyrene
8
b[a]p exposure
8
b[a]p
6
transgenerational
4
physiological deficits
4
deficits developmental
4
exposure
4

Similar Publications

The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.

View Article and Find Full Text PDF

Copper-Induced Transgenerational Plasticity in Plant Defence Boosts Aphid Fitness.

Plant Cell Environ

January 2025

Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Rheinland-Pfalz, Germany.

Transgenerational plasticity in plants is an increasingly recognized phenomenon, yet it is mostly unclear whether transgenerational plasticity is relevant to both the fitness of the plant and its interacting species. Using monoclonal strains of the giant duckweed (Spirodela polyrhiza) and its native herbivore, the waterlily aphid (Rhopalosiphum nymphaeae), we assessed whether pre-treating plants with copper excess, both indoors and outdoors, induces transgenerational plasticity in plant defences that alter plant and herbivore fitness. Outdoors, copper pre-treatment tended to increase plant growth rates under recurring copper excess.

View Article and Find Full Text PDF

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

Improving the odds of survival: transgenerational effects of infections.

EMBO Mol Med

January 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB, Nijmegen, the Netherlands.

Recent studies argue for a novel concept of the role of chromatin as a carrier of epigenetic memory through cellular and organismal generations, defining and coordinating gene activity states and physiological functions. Environmental insults, such as exposures to unhealthy diets, smoking, toxic compounds, and infections, can epigenetically reprogram germ-line cells and influence offspring phenotypes. This review focuses on intergenerational and transgenerational epigenetic inheritance in different plants, animal species and humans, presenting the up-to-date evidence and arguments for such effects in light of Darwinian and Lamarckian evolutionary theories.

View Article and Find Full Text PDF

Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids.

Arch Insect Biochem Physiol

January 2025

College of Agriculture, Ibaraki University, Inashiki, Japan.

Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!