Living anatomy is gaining increasing popularity as an alternative to the use of preserved cadaver specimens in musculoskeletal anatomy teaching. This article describes the development of a garment painted with musculoskeletal structures as an alternative to body painting. Garments offer some advantages over traditional body painting in anatomy teaching. The technique can be used across different disciplines, enhances students' ability to identify anatomic structures in living bodies, and provides insights into the topography of one or more body systems at the same time. The fact that garments are amenable to palpation by large groups of students with no damage to the painting favors repeated use in hands-on wet labs. Garments such as the one described in this article introduce a novel approach to interdisciplinary teaching and learning, which can be combined with traditional anatomy teaching methods. The first garment produced depicts part of the equine musculoskeletal system. Steps in garment construction are highlighted and indications, advantages, and limitations of the method discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3138/jvme.0716-122r1 | DOI Listing |
Mol Divers
January 2025
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Sana Kliniken Duisburg, Academic Teaching Hospital of University Duisburg-Essen, Duisburg, Germany.
Pineal gland lesions pose a significant surgical challenge due to the deep-seated nature of the pineal gland, as well as the limited field of view, and the complex vascular anatomy. The mainstay of surgical treatment, when necessary, is always histopathological clarity and gross total resection (GTR). We evaluate the surgical outcomes for pineal gland lesions, shedding light on functional outcomes, histological findings, and surgical complications.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Pamukkale University School of Medicine, Kim Burchiel Gamma Knife Center, Denizli, Türkiye, Turkey.
This study aims to demonstrate the effect of gamma knife radiosurgery (GKRS) on symptoms, hemorrhage rates, and histopathological changes in patients with cavernous malformations (CMs), regardless of whether the symptomatic lesions are hemorrhagic. This single-center retrospective study evaluated symptomatic patients with single CMs treated with GKRS between 2016 and 2023. The patients' demographic data, presenting symptoms, GKRS radiation dose, complications developed during follow-up (hemorrhage, radiotoxicity), the rate of symptom improvement, and histopathological changes of surgically removed CMs were recorded.
View Article and Find Full Text PDFGut Microbes
December 2025
Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Ischemia-reperfusion injury (IRI) is a major obstacle in liver transplantation, especially with steatotic donor livers. Dysbiosis of the gut microbiota has been implicated in modulating IRI, and plays a pivotal role in regulating host inflammatory and immune responses, but its specific role in liver transplantation IRI remains unclear. This study explores whether can mitigate IRI and its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!