We demonstrate experimentally, numerically, and analytically that soft architected materials can support the propagation of elastic vector solitons. More specifically, we focus on structures comprising a network of squares connected by thin and highly deformable ligaments and investigate the propagation of planar nonlinear elastic waves. We find that for sufficiently large amplitudes two components-one translational and one rotational-are coupled together and copropagate without dispersion. Our results not only show that soft architected materials offer a new and rich platform to study the propagation of nonlinear waves, but also open avenues for the design of a new generation of smart systems that take advantage of nonlinearities to control and manipulate the propagation of large amplitude vibrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.204102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!