Application of the Threedimensional CT Scan to the Reconstruction of Craniofacial Deformities.

Surg Technol Int

Division of Plastic and Reconstructive Surgery, Saint Francis Memorial Hospital, San Francisco and Attending Surgeon, Division of Plastic and Reconstructive Surgery, California Pacific Medical Center, San Francisco, California.

Published: November 1991

New developments in computerised tomography (CT) imaging technology have paralleled advances in craniofacial surgical techniques. The ability to reconstruct congenital, neoplastic, and traumatic deformities is dependent upon good pre-operative assessment. Understanding the spatial relationship of a given deformity is limited with conventional two-dimensional CT scans. A more precise, reproducible portrayal of the craniofacial problem has been' made possible with the development of three-dimensional CT scan capabilities.

Download full-text PDF

Source

Publication Analysis

Top Keywords

application threedimensional
4
threedimensional scan
4
scan reconstruction
4
reconstruction craniofacial
4
craniofacial deformities
4
deformities developments
4
developments computerised
4
computerised tomography
4
tomography imaging
4
imaging technology
4

Similar Publications

Classification systems for Adolescent Idiopathic Scoliosis (AIS) play an important role in guiding both surgical planning and conservative treatments. Traditional 2D classification systems, such as the Lenke, King and Lehnert-Schroth classifications, have been widely used for the clinical diagnosis and treatment of scoliosis. However, with the growing understanding of the three-dimensional nature of scoliosis and advancements in 3D reconstruction technologies, 3D classification systems are gaining increasing attention.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

Due to the larger pore structure, the macroporous material can be used as the immobilized carrier to not only increase the enzyme loading capacity, but also facilitate the transfer of reactants and substrates. Based on this, a three-dimensional ordered macro-microporous ZIF-8 (SOM-ZIF-8) was prepared using three-dimensional ordered stacked polystyrene spheres as the hard template. The morphology and structure of SOM-ZIF-8 were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and so on.

View Article and Find Full Text PDF

Recent emerging trends in dendrimer research: Electrochemical sensors and their multifaceted applications in biomedical fields or healthcare.

Biosens Bioelectron

January 2025

Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye. Electronic address:

Dendrimers enhance the selectivity and sensitivity of sensors through their synthetic, highly branched, three-dimensional structures and large surface area. This unique architecture enables precise functionalization with various recognition elements, significantly improving the specificity and sensitivity of electrochemical sensors for detecting disease markers, biomolecules, and environmental pollutants. Dendrimer-based electrochemical sensors offer promising advancements in healthcare, such as detecting biomarkers for heart disease, monitoring blood glucose levels, and sensitively determining cancer-related proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!