Widespread genome hypo-methylation and promoter hyper-methylation of epithelium-specific genes are hallmarks of stable epithelial-to-mesenchymal transition (EMT), which in prostate cancer (PCa) correlates with castration resistance, cancer stem cells generation, chemoresistance and worst prognosis. Exploiting our consolidated 'ex-vivo' system, we show that cancer-associated fibroblasts (CAFs) released factors have pivotal roles in inducing genome methylation changes required for EMT and stemness in EMT-prone PCa cells. By global DNA methylation analysis and RNA-Seq, we provide compelling evidence that conditioned media from CAFs explanted from two unrelated patients with advanced PCa, stimulates concurrent DNA hypo- and hyper-methylation required for EMT and stemness in PC3 and DU145, but not in LN-CaP and its derivative C4-2B, PCa cells. CpG island (CGI) hyper-methylation associates with repression of genes required for epithelial maintenance and invasion antagonism, whereas activation of EMT markers and stemness genes correlate with CGI hypo-methylation. Remarkably, methylation variations and EMT-regulated transcripts almost completely reverse qualitatively and quantitatively during MET. Unsupervised clustering analysis of the PRAD TCGA data set with the differentially expressed (DE) and methylated EMT signature, identified a gene cluster of DE genes defined by a CAF+ and AR- phenotype and worst diagnosis. This gene cluster includes the relevant factors for EMT and stemness, which display DNA methylation variations in regulatory regions inversely correlated to their expression changes, thus strongly sustaining the ex-vivo data. DNMT3A-dependent methylation is essential for silencing epithelial maintenance and EMT counteracting genes, such as CDH1 and GRHL2, that is, the direct repressor of ZEB1, the key transcriptional factor for EMT and stemness. Accordingly, DNMT3A knock-down prevents EMT entry. These results shed light on the mechanisms of establishment and maintenance of coexisting DNA hypo- and hyper-methylation patterns during cancer progression, the generation of EMT and cell stemness in advanced PCa, and may pave the way to new therapeutic implications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/onc.2017.159DOI Listing

Publication Analysis

Top Keywords

emt stemness
16
dna methylation
12
methylation variations
12
emt
10
epithelial-to-mesenchymal transition
8
cancer-associated fibroblasts
8
prostate cancer
8
required emt
8
pca cells
8
advanced pca
8

Similar Publications

CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer.

J Exp Clin Cancer Res

January 2025

Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Amadeolab Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy.

Background: Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear.

View Article and Find Full Text PDF

Hypoxia is a common phenomenon for solid tumors due to a lack of effective vascular system, and has been deemed as an important factor that drives the progression of thyroid cancer (TC) via altering the characteristics of tumor cells. The present study suggested that hypoxic TC cells enhanced cancer stem cell properties and progression of TC by delivering long intergenic non-protein coding RNA 665 (LINC00665)-containing exosomes. Specifically, TPC1 cells were exposed to normoxic or hypoxic environment, and it was found that hypoxic TPC1 cells-secreted exosomes (H-exo) were enriched with LINC00665, compared to normoxic TPC1 cells-derived exosomes (N-exo).

View Article and Find Full Text PDF

The endonuclease activity of MCPIP1 controls the neoplastic transformation of epithelial cells via the c-Met/CD44 axis.

Cell Commun Signal

January 2025

Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery.

Biochim Biophys Acta Rev Cancer

January 2025

Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:

Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.

View Article and Find Full Text PDF

The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword.

Exp Cell Res

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China. Electronic address:

Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!