People value experiences in part because of the memories they create. Yet, we find that people systematically overestimate how much they will retrospect about their experiences. This overestimation results from people focusing on their desire to retrospect about experiences, while failing to consider the experience's limited enduring accessibility in memory. Consistent with this view, we find that desirability is a stronger predictor of forecasted retrospection than it is of reported retrospection, resulting in greater overestimation when the desirability of retrospection is higher. Importantly, the desire to retrospect does not change over time. Instead, past experiences become less top-of-mind over time and, as a result, people simply forget to remember. In line with this account, our results show that obtaining physical reminders of an experience reduces the overestimation of retrospection by increasing how much people retrospect, bringing their realized retrospection more in line with their forecasts (and aspirations). We further observe that the extent to which reported retrospection falls short of forecasted retrospection reliably predicts declining satisfaction with an experience over time. Despite this potential negative consequence of retrospection falling short of expectations, we suggest that the initial overestimation itself may in fact be adaptive. This possibility and other potential implications of this work are discussed. (PsycINFO Database Record
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/pspa0000094 | DOI Listing |
Mar Pollut Bull
January 2025
Ocean Environment Institute, Oceanic Consulting and Trading, Seoul, Republic of Korea.
This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.
View Article and Find Full Text PDFUndersea Hyperb Med
January 2025
Hyperbaric and Tissue Viability Unit, Gozo General Hospital, Malta.
Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery.
View Article and Find Full Text PDFHeart
January 2025
The George Institute for Global Health, School of Public Health, Imperial College London, London, UK.
Background: The Assessing cardiovascular risk using Scottish Intercollegiate Guidelines Network (ASSIGN) risk score, developed in 2006, is used in Scotland for estimating the 10-year risk of first atherosclerotic cardiovascular disease (ASCVD). Rates of ASCVD are decreasing, and an update is required. This study aimed to recalibrate ASSIGN (V.
View Article and Find Full Text PDFNanoscale
January 2025
Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium.
Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
While thermoelectric conversion by a thermocapacitive cycle has been considered a promising green technology for low-grade heat recovery, our study finds that its practical feasibility is overestimated. During thermal charging, the coexistence and dynamic competition between thermal-induced voltage rise and self-discharge lead to the limitations of the thermocapacitive cycle. Therefore, the operational conditions in the charge-heat-discharge steps seriously restrict the thermal charging performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!