TAZ is involved in transcriptional complexes regulating smooth muscle cell differentiation.

FEBS J

Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

Published: June 2017

TGFβ signaling plays an important role in the differentiation of vascular smooth muscle cells (VSMCs), yet the mechanism remains largely unknown. The study by Pagiatakis et al. identifies the transcriptional coactivator TAZ as a mediator of TGFβ signaling in VSMC-specific transcription. TAZ is involved in the formation of stable ternary complexes of SRF/Myocardin on CArG elements that are required for the transcription of VSMC structural genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14079DOI Listing

Publication Analysis

Top Keywords

taz involved
8
smooth muscle
8
tgfβ signaling
8
involved transcriptional
4
transcriptional complexes
4
complexes regulating
4
regulating smooth
4
muscle cell
4
cell differentiation
4
differentiation tgfβ
4

Similar Publications

Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.

View Article and Find Full Text PDF

Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma.

FEBS J

January 2025

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.

In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.

View Article and Find Full Text PDF

Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration.

Biomaterials

December 2024

School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, PR China. Electronic address:

The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes.

View Article and Find Full Text PDF

MST2 (STK3) is a major upstream kinase in the Hippo signalling pathway, an evolutionary conserved pathway in regulation of organ size, self-renewal and tissue homeostasis. Its downstream effectors are the transcriptional regulators YAP and TAZ. This pathway is regulated by a variety of factors, such as substrate stiffness or cell-cell contacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!