Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6-12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10-20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437718PMC
http://dx.doi.org/10.3389/fncir.2017.00034DOI Listing

Publication Analysis

Top Keywords

locomotion
9
lfp oscillations
8
mesencephalic locomotor
8
locomotor region
8
lfps recorded
8
mlr sites
8
gamma band
8
mlr
6
locomotor
5
sites
5

Similar Publications

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

Pattern architected soft magnetic actuation.

Soft Matter

January 2025

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.

Bioinspired shape-morphing soft magnetic actuators have potential applications in medicine, robotics, and engineering due to their soft body, untethered control, and infinite degrees of freedom. The shape programming of the soft magnetic actuators (consisting of soft ferromagnetic CI particles in a soft matrix) is an involved task, as it requires a moulding process severely limiting the capability to program complex shapes. The current study explores a shape programming technique that architects the particle pattern configuration in the actuator, mimicking the pattern found in the mould-programmed actuator, thereby eliminating the need for a mould and providing a greater capability of programming complex shapes.

View Article and Find Full Text PDF

Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.

View Article and Find Full Text PDF

Unlabelled: To investigate the effects of differing treadmills on impact acceleration and muscle activation.

Methods: 15 males and 7 females (27.8 ± 7.

View Article and Find Full Text PDF

Background: Human kinesin family member 11 (KIF11) plays a vital role in regulating the cell cycle and is implicated in the tumorigenesis and progression of various cancers, but its role in endometrial cancer (EC) is still unclear. Our current research explored the prognostic value, biological function and targeting strategy of KIF11 in EC through approaches including bioinformatics, machine learning and experimental studies.

Methods: The GSE17025 dataset from the GEO database was analyzed via the limma package to identify differentially expressed genes (DEGs) in EC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!