Acute and repeated exposures to ketamine mimic aspects of positive, negative, and cognitive symptoms of schizophrenia in humans. Recent studies by our group and others have shown that chronicity of ketamine use may be a key element for establishing a more valid model of cognitive symptoms of schizophrenia. However, current understanding on the long-term consequences of ketamine exposure on brain circuits has remained incomplete, particularly with regard to microstructural changes of white matter tracts that underpin the neuropathology of schizophrenia. Thus, the present study aimed to expand on previous investigations by examining causal effects of repeated ketamine exposure on white matter integrity in a non-human primate model. Ketamine or saline (control) was administered intravenously for 3 months to male adolescent cynomolgus monkeys ( = 5/group). Diffusion tensor imaging (DTI) experiments were performed and tract-based spatial statistics (TBSS) was used for data analysis. Fractional anisotropy (FA) was quantified across the whole brain. Profoundly reduced FA on the right side of sagittal striatum, posterior thalamic radiation (PTR), retrolenticular limb of the internal capsule (RLIC) and superior longitudinal fasciculus (SLF), and on the left side of PTR, middle temporal gyrus and inferior frontal gyrus were observed in the ketamine group compared to controls. Diminished white matter integrity found in either fronto-thalamo-temporal or striato-thalamic connections with tracts including the SLF, PTR, and RLIC lends support to similar findings from DTI studies on schizophrenia in humans. This study suggests that chronic ketamine exposure is a useful pharmacological paradigm that might provide translational insights into the pathophysiology and treatment of schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437169PMC
http://dx.doi.org/10.3389/fnins.2017.00285DOI Listing

Publication Analysis

Top Keywords

ketamine exposure
16
white matter
16
chronic ketamine
8
exposure white
8
adolescent cynomolgus
8
cynomolgus monkeys
8
cognitive symptoms
8
symptoms schizophrenia
8
schizophrenia humans
8
matter integrity
8

Similar Publications

The current state of mental health treatment for individuals diagnosed with major depressive disorder leaves billions of individuals with first-line therapies that are ineffective or burdened with undesirable side effects. One major obstacle is that distinct pathologies may currently be diagnosed as the same disease and prescribed the same treatments. The key to developing antidepressants with ubiquitous efficacy is to first identify a strategy to differentiate between heterogeneous conditions.

View Article and Find Full Text PDF

Inulin alleviates chronic ketamine-induced impairments in memory and prepulse inhibition by regulating the gut microbiota, inflammation, and kynurenine pathway.

Int J Biol Macromol

January 2025

Institute of Neuropsychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China. Electronic address:

Chronic ketamine administration causes cognitive impairments similar to those observed in schizophrenia. Growing evidence suggests that patients with schizophrenia show alterations in gut microbiota, which is associated with cognitive impairments. Inulin could regulate gut microbiota.

View Article and Find Full Text PDF

Characterizing the therapeutical use of ketamine for adolescent rats of both sexes: Antidepressant-like efficacy and safety profile.

Biomed Pharmacother

December 2024

IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain. Electronic address:

While ketamine was approved for treatment-resistant depression in adult patients, its efficacy and safety profile for adolescence still requires further characterization. In this context, prior preclinical studies have shown that sub-anesthetic doses of ketamine during adolescence exert antidepressant-like effects in rodents in a dose- and sex-dependent manner. However, additional studies evaluating the short- and long-term safety profile of ketamine at the doses necessary to induce antidepressant-like effects are needed.

View Article and Find Full Text PDF

Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity.

View Article and Find Full Text PDF

Haloperidol, a conventional antipsychotic, was mixed with piperine in a ketamine-induced schizophrenia rat model to evaluate the interaction potential of this mixture through in-vitro and in-vivo analyses. Piperine, known for its CYP450 enzyme inhibitory effects, enhances the bioavailability of various drugs. Initial in-vitro assays using a high-throughput fluorometric method showed that the haloperidol-piperine mixture inhibited CYP3A4 and CYP2D6 enzymes, comparable to positive controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!