A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection. | LitMetric

Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection.

Brain Behav Immun

Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Research Center of the IUSMQ, 2601, de la Canardière, Québec, QC G1J 2G3, Canada. Electronic address:

Published: October 2017

Activation of microglial cells in response to brain injury and/or immune stimuli is associated with a marked induction of Toll-like receptors (TLRs). While in adult brain, the contribution of individual TLRs, including TLR2, in pathophysiological cascades has been well established, their role and spatial and temporal induction patterns in immature brain are far less understood. To examine whether infectious stimuli and sterile inflammatory stimuli trigger distinct TLR2-mediated innate immune responses, we used three models in postnatal day 9 (P9) mice, a model of infection induced by systemic endotoxin injection and two models of sterile inflammation, intra-cortical IL-1β injection and transient middle cerebral artery occlusion (tMCAO). We took advantage of a transgenic mouse model bearing the dual reporter system luciferase/GFP under transcriptional control of a murine TLR2 promoter (TLR2-luc-GFP) to visualize the TLR2 response in the living neonatal brain and then determined neuroinflammation, microglial activation and leukocyte infiltration. We show that in physiological postnatal brain development the in vivo TLR2-luc signal undergoes a marked ∼30-fold decline and temporal-spatial changes during the second and third postnatal weeks. We then show that while endotoxin robustly induces the in vivo TLR2-luc signal in the living brain and increases levels of several inflammatory cytokines and chemokines, the in vivo TLR2-luc signal is reduced after both IL-1β and tMCAO and the inflammatory response is muted. Immunofluorescence revealed that microglial cells are the predominant source of TLR2 production during postnatal brain development and in all three neonatal models studied. Flow cytometry revealed developmental changes in CD11b/CD45 and CD11b/Ly6C cell populations, involvement of cells of the monocyte lineage, but lack of Ly6G neutrophils or CD3 cells in acutely injured neonatal brains. Cumulatively, our results suggest distinct TLR2 induction patterns following PAMP and DAMP - mediated inflammation in immature brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151183PMC
http://dx.doi.org/10.1016/j.bbi.2017.05.020DOI Listing

Publication Analysis

Top Keywords

vivo tlr2-luc
12
tlr2-luc signal
12
innate immune
8
sterile inflammation
8
microglial cells
8
brain
8
induction patterns
8
immature brain
8
postnatal brain
8
brain development
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!