Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study explored the protective effects of the microRNA-126 (miR-126)-mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response.
Methods: Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimic-negative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK-8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test.
Results: Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor-NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor and wortmannin group exhibited the opposite results. Furthermore, decreased p/t-PI3K, p/t-Akt and p/t-eNOS expressions, decreased NO, VEGF and SOD contents, cell proliferation and lumen formation abilities, as well as increased ROS content, increased IL-6, IL-10 and TNF-α expression, and increased cell apoptosis were observed in the miR-126 mimic + wortmannin group compared to themiR-126 mimic group.
Conclusions: These findings indicated that miR-126 protects HCMECs from H/R-induced injury and inflammatory response by activating the PI3K/Akt/ eNOS signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000477597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!