Generalized dispersion analysis of arbitrarily cut monoclinic crystals.

Spectrochim Acta A Mol Biomol Spectrosc

Leibniz-Institut für Photonische Technologien e.V., Albert-Einstein-Straße 9, D-07745 Jena, Germany; Institut für Physikalische Chemie und Abbe Center of Photonics, Helmholtzweg 4, D-07743 Jena, Germany.

Published: October 2017

Dispersion analysis is applicable to arbitrarily cut monoclinic crystals of unknown orientation in order to find the symmetry axis. By this it is possible to differentiate between the transition moments oriented parallel and normal to the b-axis and to determine the dielectric tensor functions of those two principal directions. Dispersion analysis of arbitrarily cut monoclinic crystals is based on an extension of the evaluation scheme developed for arbitrarily cut orthorhombic crystals. We present dispersion analysis of monoclinic crystals exemplarily on spodumene (LiAl(SiO)) and yttrium orthosilicate (YSiO).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2017.05.039DOI Listing

Publication Analysis

Top Keywords

dispersion analysis
16
arbitrarily cut
16
monoclinic crystals
16
cut monoclinic
12
analysis arbitrarily
8
crystals dispersion
8
crystals
5
generalized dispersion
4
analysis
4
arbitrarily
4

Similar Publications

Archaeological coins are considered essential sources of historical documentation. Over time, they are subjected to corrosion processes that gradually alter their appearance, shape, and composition. This study aims to evaluate the effects of the patina and/or protective coating on the corrosion process.

View Article and Find Full Text PDF

A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.

View Article and Find Full Text PDF

Dispersion stabilization of proteins by carrageenan in baked milk: A quantitative separation study.

Food Chem

January 2025

Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China,. Electronic address:

Baked milk is subjected to prolonged high-temperature processing, which often undermines its dispersion stability. While carrageenan is known to inhibit milk demixing, its role in stabilizing heat-induced protein aggregates remains inadequately understood. In this study, we isolated casein micelles (CM), whey protein-casein aggregates (WPCA), and whey protein aggregates (WPA) from baked milk through centrifugation.

View Article and Find Full Text PDF

Extraction and quantitation of fentanyl in exhaled breath condensate using a magnetic dispersive solid phase based on graphene oxide and covalent organic framework composite and LC-MS/MS analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan. Electronic address:

Free fentanyl is responsible for its pharmacological effects, but its total concentration is typically determined for therapeutic drug monitoring purposes. Determination of fentanyl concentration can help reduce the prescribed doses, leading to fewer side effects and increased effectiveness. Therefore, predicting free drug concentration in pharmaceutical research is crucial.

View Article and Find Full Text PDF

Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services.

Glob Chang Biol

January 2025

Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.

Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!