Muscimol is one of the most potent agonist ligands at the gamma-aminobutyric acidA (GABAA) receptor. Analysis of its chemical structure showed it to be a candidate for photoaffinity labeling. In practice, UV irradiation at 254 nm both changed the UV spectrum of muscimol and induced an irreversible binding of [3H]-muscimol to rat cerebellar synaptosomal membrane. After 10 min of irradiation, using 10 nM [3H]muscimol, the specific portion of this binding was 270 fmol/mg protein. (Nonspecific binding was defined as that arising in the presence of 1 mM GABA.) Specific binding increased asymptotically up to 100 nM [3H]muscimol. Irradiation of the membranes themselves did not significantly alter the KD or Bmax of reversible [3H]muscimol binding. However, irradiation of [3H]muscimol reduced its capacity subsequently to photolabel the membranes by 86 +/- 3%. Dose-dependent inhibition of binding was observed with muscimol, GABA, and bicuculline methiodide; with 10 nM [3H]muscimol maximum inhibition was 70% of total labeling and the order of potencies of these three compounds was characteristic of labeling to the GABAA receptor. Baclofen, l-glutamate, and diazepam exerted no effect at high concentrations. SDS-PAGE of the photolabeled membranes indicated specific incorporation of radioactivity into two molecular-weight species. One failed to enter the separating gel, implying a molecular weight greater than 250,000 daltons (250 kD). The molecular weight of the other was identified by fluorography to be about 52,000 daltons (52 kD).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1985.tb12904.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!