Aging is associated with changes in several basic parameters of circadian timing system (CTS) in mammals leading to circadian dysfunction. We had reported earlier that upon aging and in rotenone induced Parkinson's disease (RIPD) rat model there were significant alterations in the core clock genes expression levels and daily pulses. To identify biomarkers of aging and PD chronomics of proteomic day-night profiles in suprachiasmatic nucleus (SCN), pineal and substantia nigra (SN) in 3 month (m), 12, 24 m and RIPD rat model were studied at two time points i.e. Zeitgeber Time (ZT)-6 (mid-day) and ZT-18 (mid-night). Proteome analysis was done by using two dimensional (2-D) electrophoresis and the spots showing robust day-night variations were identified by using MALDI TOF/TOF analysis. In 3 m rats the number of proteins showing day-night variations were relatively more than 12, 24 m and RIPD rat model in SCN and SN. But in pineal there was increase in number of protein spots showing day-night variations in 24 m. Mass spectroscopy of the protein spots showing robust day night variation in aging and RIPD rats were identified. As melatonin, a multitasking molecule, an endogenous synchronizer of rhythm, an antioxidant and an antiaging drug, declines with aging, the effects of melatonin administration on differential alterations in chronomics of 2-D protein profiles in aging and RIPD male Wistar rats were studied. We report here that the melatonin could be playing an important role in modulating the chronomics of 2-D protein profiles. Additionally, various proteins were identified for the first time in this study showing significant day night variation in SCN, pineal and SN may prove useful towards targeting novel treatments for circadian dysfunction, good health and longevity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10522-017-9711-y | DOI Listing |
Biogerontology
August 2017
Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
Biogerontology
February 2015
Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
The circadian system in suprachiasmatic nucleus (SCN) involves regulated serotonin levels and coordinated expression of various clock genes. To understand circadian disfunction in the age-related neurodegenerative disorder Parkinson's disease (PD), the rotenone-induced PD (RIPD) male Wistar rat model was used. The alterations in the rhythmic dynamic equilibrium of interactions between the various components of serotonin metabolism and the molecular clock were measured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!