Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO infusion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-017-3724-zDOI Listing

Publication Analysis

Top Keywords

hco production
16
gastric mucosa
12
bicarbonate secretion
8
secretion gastric
8
neuronal synthase
8
mucosa induced
8
induced mild
8
neuronal endothelial
8
endothelial synthases
8
endothelial synthase
8

Similar Publications

The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.

View Article and Find Full Text PDF

MnO/porous spontaneously polarized ceramic with self-powered electric field and superior charge transfer to catalyze ozonation for efficient demulsification.

J Hazard Mater

January 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China. Electronic address:

Article Synopsis
  • Ozone (O) demulsification has potential for treating emulsion wastewater, but challenges include low mass transfer efficiency and selective oxidation.
  • A new composite, MnO/porous spontaneously polarized ceramic (MnO/PSPC), enhances catalytic ozonation (HCO) by utilizing strong interfacial interactions and a self-powered electric field, improving charge transfer.
  • The MnO/PSPC composite achieved a 99% demulsification rate for certain emulsions in just 30 minutes, significantly outperforming traditional methods and demonstrating effective performance across multiple cycles.
View Article and Find Full Text PDF

This study focuses on the construction and interpretation of a mine water inrush source identification model to enhance the precision and credibility of the model. For water inrush source identification and feature analysis, a novel method combining XGBoost and SHAP is suggested. The model uses Ca, Mg, K + Na, HCO, Cl, SO, Hardness, and pH as discriminators, and the key parameters in the XGBoost model are optimized by introducing the improved sparrow search algorithm.

View Article and Find Full Text PDF

The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.

View Article and Find Full Text PDF

Introduction: To address the scarcity of agricultural phosphorus (P) fertilizers and reduce phosphorus accumulation in wastewater, this study employed iron-modified biochar (Fe-B) to adsorb phosphorus from water. The phosphorus-loaded iron-modified biochar (Fe-BP) was subsequently applied to peanut fields. Batch experiments were conducted to determine the optimal adsorption parameters and mechanism of Fe-B for phosphate ions (PO ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!