Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Early defibrillation in out-of-hospital cardiac arrest (OHCA) is of importance to improve survival. In many countries the number of automated external defibrillators (AEDs) is increasing, but the use is low. Guidelines suggest that AEDs should be installed in densely populated areas and in locations with many visitors. Attempts have been made to identify optimal AED locations based on the incidence of OHCA using geographical information systems (GIS), but often on small datasets and the studies are seldom reproduced. The aim of this paper is to investigate if the distribution of public AEDs follows the incident locations of public OHCAs in urban areas of Stockholm County, Sweden.
Method: OHCA data were obtained from the Swedish Register for Cardiopulmonary Resuscitation and AED data were obtained from the Swedish AED Register. Urban areas in Stockholm County were objectively classified according to the pan-European digital mapping tool, Urban Atlas (UA). Furthermore, we reclassified and divided the UA land cover data into three classes (residential, non-residential and other areas). GIS software was used to spatially join and relate public AED and OHCA data and perform computations on relations and distance.
Results: Between 1 January 2012 and 31 December 2014 a total of 804 OHCAs occurred in public locations in Stockholm County and by December 2013 there were 1828 AEDs available. The incidence of public OHCAs was similar in residential (47.3%) and non-residential areas (43.4%). Fewer AEDs were present in residential areas than in non-residential areas (29.4% vs 68.8%). In residential areas the median distance between OHCAs and AEDs was significantly greater than in non-residential areas (288 m vs 188 m, p<0.001).
Conclusion: The majority of public OHCAs occurred in areas classified in UA as 'residential areas' with limited AED accessibility. These areas need to be targeted for AED installation and international guidelines need to take geographical location into account when suggesting locations for AED installation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623355 | PMC |
http://dx.doi.org/10.1136/bmjopen-2016-014801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!