Developmental conditions in early life frequently have long-term consequences on the adult phenotype, but the adult environment can modulate such long-term effects. Glucocorticoid hormones may be instrumental in mediating developmental effects, but the permanency of such endocrine changes is still debated. Here, we manipulated environmental conditions during development (small vs. large brood size, and hence sibling competition) and in adulthood (easy vs. hard foraging conditions) in a full factorial design in zebra finches, and studied effects on baseline (Bas-CORT) and stress-induced (SI-CORT) corticosterone in adulthood. Treatments affected Bas-CORT in females, but not in males. Females reared in small broods had intermediate Bas-CORT levels as adults, regardless of foraging conditions in adulthood, while females reared in large broods showed higher Bas-CORT levels in hard foraging conditions and lower levels in easy foraging conditions. Female Bas-CORT was also more susceptible than male Bas-CORT to non-biological variables, such as ambient temperature. In line with these results, repeatability of Bas-CORT was higher in males (up to 51%) than in females (25%). SI-CORT was not responsive to the experimental manipulations in either sex and its repeatability was high in both sexes. We conclude that Bas-CORT responsiveness to intrinsic and extrinsic conditions is higher in females than in males, and that the expression of developmental conditions may depend on the adult environment. The latter finding illustrates the critical importance of studying of causes and consequences of long-term developmental effects in other environments in addition to standard laboratory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yhbeh.2017.05.020DOI Listing

Publication Analysis

Top Keywords

foraging conditions
20
developmental conditions
12
conditions
11
adult environment
8
developmental effects
8
hard foraging
8
bas-cort
8
females males
8
females reared
8
bas-cort levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!