Melatonin (Mel) has strong antioxidant properties since it is a direct scavenger of oxygen-based free radicals and related species. The main aim of this study is to show whether the effects of Mel can prevent the potential adverse effects of diclofenac sodium (DS), used as a non-steroidal anti-inflammatory drug (NSAID) during the prenatal period, on the newborn experimental rat brain tissues using stereological methods Twenty-four male 12-week old Wistar albino rats were used. The study involved four groups (each containing six rats), those exposed, during the prenatal period, to saline 1ml/kg (Saline group), to diclofenac sodium 3.6mg/kg (DS group), or to diclofenac sodium+melatonin 50mg/kg (DS+Mel group), and a control group (Cont group). At the end of the experiment, the brains were removed from the cranium for histological and stereological analyses. Cell loss in the hippocampus exposed to DS was observed compared to the Cont group (p<0.01), and a similar side-effect was also seen in the Saline group (p<0.01). However, there was no significant difference in cell numbers between the Cont and DS+Mel groups (p>0.05). These results suggest that exposure to DS during pregnancy causes a decrease in the number of cells in the hippocampus and dentate gyrus in the postnatal period. Using Mel, a neuroprotective agent, reduced the toxic effects of DS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2017.05.006DOI Listing

Publication Analysis

Top Keywords

diclofenac sodium
12
prenatal period
12
hippocampus exposed
8
group diclofenac
8
cont group
8
group
6
neuroprotective melatonin
4
melatonin hippocampus
4
diclofenac
4
exposed diclofenac
4

Similar Publications

The presence of pharmaceuticals in aquatic ecosystems and their impact on humans and the environment are growing concerns in environmental health. This study aimed to evaluate the potential reproductive effects of diclofenac, ibuprofen, and aspirin on dissociated ovarian and testicular cells from Arabian Sea bream, Acanthopagrus arabicus. The cells were exposed to varying concentrations of the pharmaceuticals for 48 h.

View Article and Find Full Text PDF

Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.

View Article and Find Full Text PDF

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!