Objective: To analyze acoustic absorbance using wideband tympanometry in neonates exposed to passive smoking during pregnancy.
Method: A study comprising 54 neonates in the control group (CG - unexposed) and 19 in the study group (SG - exposed) was carried out. Subjects were submitted to the wideband tympanometry test and subsequent analysis of absorbance of 17 frequencies.
Result: Low frequencies had a lower level of absorbance compared to high frequencies for both ambient and peak pressures, with no difference between the groups.
Conclusion: No effect of passive smoking on acoustic absorbance measurements in neonates was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijporl.2017.01.036 | DOI Listing |
Anal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
Sheep wool is a precious, renewable raw material that is nowadays disregarded and wasted. To better use local sources of wool, it was used to manufacture tufted carpets. The coarse wool of mountain sheep was used to form a carpet pile layer, while the waste wool from the tannery industry was applied to form carpet underlayment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Occupational Health Engineering, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, Iran.
The purpose of this research is to investigate the potential of chemical modification to improve the hydrophobic properties and thermal stability of bamboo fibers and to evaluate the sound absorption performance of raw and modified fibers. To achieve this goal, bamboo fibers were modified using stearic acid coatings and aluminum hydroxide nanoparticles. The results showed that the modification of fibers with stearic acid (STA) can improve the contact angle and hydrophobicity of bamboo fibers, so that for modified fibers with a concentration of 0.
View Article and Find Full Text PDFPhotoacoustics
February 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Sha Tin, Hong Kong, 999077, China.
Lattice metamaterials emerge as advanced architected materials with superior physical properties and significant potential for lightweight applications. Recent developments in additive manufacturing (AM) techniques facilitate the manufacturing of lattice metamaterials with intricate microarchitectures and promote their applications in multi-physical scenarios. Previous reviews on lattice metamaterials have largely focused on a specific/single physical field, with limited discussion on their multi-physical properties, interaction mechanisms, and multifunctional applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!