Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of FeO, MgO, AlO, and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.05.119 | DOI Listing |
Waste Manag
January 2025
Energy and Sustainability Department (EES), Federal University of Santa Catarina (UFSC), 88905-120, Araranguá, SC, Brazil. Electronic address:
Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:
Decentralized thermal treatment is a common method for municipal solid waste (MSW) disposal in rural areas. However, evaluating the effect of incineration has always been challenging owing to the difficult and time-consuming measurements involved. Herein, this study presented a rapid image recognition method for assessing the effects of thermal treatment on MSW using a neural network algorithm and a BAEVA 1.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:
Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Gasification slag is the solid waste produced in the process of coal gasification. China produces approximately 30 million tons of gasification slag every year, which urgently needs to be recycled in an efficient and sustainable way. This paper discusses the feasibility of using gasification slag as a supplementary cementitious material (SCM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!