The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO].

J Plant Physiol

Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, 3363 Victoria, Australia; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B152TT, UK. Electronic address:

Published: September 2017

The atmospheric CO concentration ([CO]) is increasing and predicted to reach ∼550ppm by 2050. Increasing [CO] typically stimulates crop growth and yield, but decreases concentrations of nutrients, such as nitrogen ([N]), and therefore protein, in plant tissues and grains. Such changes in grain composition are expected to have negative implications for the nutritional and economic value of grains. This study addresses two mechanisms potentially accountable for the phenomenon of elevated [CO]-induced decreases in [N]: N uptake per unit length of roots as well as inhibition of the assimilation of nitrate (NO) into protein are investigated and related to grain protein. We analysed two wheat cultivars from a similar genetic background but contrasting in agronomic features (Triticum aestivum L. cv. Scout and Yitpi). Plants were field-grown within the Australian Grains Free Air CO Enrichment (AGFACE) facility under two atmospheric [CO] (ambient, ∼400ppm, and elevated, ∼550ppm) and two water treatments (rain-fed and well-watered). Aboveground dry weight (ADW) and root length (RL, captured by a mini-rhizotron root growth monitoring system), as well as [N] and NO concentrations ([NO]) were monitored throughout the growing season and related to grain protein at harvest. RL generally increased under e[CO] and varied between water supply and cultivars. The ratio of total aboveground N (TN) taken up per RL was affected by CO treatment only later in the season and there was no significant correlation between TN/RL and grain protein concentration across cultivars and [CO] treatments. In contrast, a greater percentage of N remained as unassimilated [NO] in the tissue of e[CO] grown crops (expressed as the ratio of NO to total N) and this was significantly correlated with decreased grain protein. These findings suggest that e[CO] directly affects the nitrate assimilation capacity of wheat with direct negative implications for grain quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2017.05.011DOI Listing

Publication Analysis

Top Keywords

grain protein
20
root growth
8
decreased grain
8
negative implications
8
ratio total
8
grain
7
protein
7
[co]
5
proportion nitrate
4
nitrate leaf
4

Similar Publications

Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice.

Plant Sci

January 2025

Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice.

View Article and Find Full Text PDF

As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (FeONPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.

View Article and Find Full Text PDF

Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.

View Article and Find Full Text PDF

Focusing on the mechanism of glycinin-soybean lipophilic protein hybrid gels: Effect of ultrasonic, subunit interactions, and formation process analysis.

Ultrason Sonochem

January 2025

Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China. Electronic address:

Heat facilitates aggregation and gel formation of soybean proteins. Ultrasonic reduces the size of protein aggregates. This study examined the impact of glycinin (11S) subunits on soybean lipophilic proteins (SLPs) gel formation and underlying mechanisms.

View Article and Find Full Text PDF

Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.

Plant Foods Hum Nutr

January 2025

UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina.

The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!