Compared with stem water storage, leaf water storage is understudied although it may be important for alleviating water stress by contributing quickly and directly to transpiration demand. To quantify the relative contribution of stem versus leaf water storage to daily water deficit, we measured diurnal changes in transpiration rate, sap-flow velocity and stem radius of 10-year-old Cryptomeria japonica D. Don trees. We assumed that the duration of time lags between transpiration rate and sap-flow velocity reflected stored water in the stem and leaf, and that stem volume change represented water content of elastic tissue. The relationship between fresh mass and water potential of the whole tree indicated that the study trees had capacity to store, on average, 91.4 ml of water per kg fresh mass at turgor loss. Leaves, sapwood and elastic tissue contributed around 51%, 29% and 20% of stored water, respectively. During morning, transpiration rates were higher than sap-flow velocity suggesting depletion of stored water. During the first 2 h after onset of transpiration, stored water contributed more than 100% of whole-tree transpiration. Depletion of leaf water (PLeaf) and sapwood water (PSap) coincided with the onset of transpiration and became maximum around 15:00 h. Depletion of elastic tissue water (PElastic) lagged behind that of PLeaf and PSap by 1-2 h, indicating that replenishment of stored water occurs late in the day when low leaf water potentials resulting from daytime transpiration drive water uptake. Maximum depletion of PLeaf was about 1-3 times and 5-10 times that of PSap and PElastic, respectively. The contribution of PLeaf to total daily transpiration was 5-8%, while those of PSap and PElastic were 3-4% and 0.7-1%, respectively. Our results suggest the importance of leaf water storage in maintaining daily transpiration in young C. japonica trees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpx056 | DOI Listing |
Plant Physiol Biochem
January 2025
Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.
View Article and Find Full Text PDFPhysiol Plant
January 2025
University of Turin, Department of Agricultural, Forest and Food Science, Grugliasco, Italy.
Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!