During winter evergreens maintain a sustained form of thermal energy dissipation that results in reduced photochemical efficiency measured using the chlorophyll fluorescence parameter Fv/Fm. Eastern white pine (Pinus strobus L.) and white spruce [Picea glauca (Moench) Voss] have been shown to differ in their rate of recovery of Fv/Fm from winter stress. The goal of this study was to monitor changes in photosynthetic protein abundance and phosphorylation status during winter recovery that accompany these functional changes. An additional goal was to determine whether light-dependent changes in light harvesting complex II (LHCII) phosphorylation occur during winter conditions. We used a combination of field measurements and recovery experiments to monitor chlorophyll fluorescence and photosynthetic protein content and phosphorylation status. We found that pine recovered three times more slowly than spruce, and that the kinetics of recovery in spruce included a rapid and slow component, while in pine there was only a rapid component to recovery. Both species retained relatively high amounts of the light harvesting protein Lhcb5 (CP26) and the PsbS protein during winter, suggesting a role for these proteins in sustained thermal dissipation. Both species maintained high phosphorylation of LHCII and the D1 protein in darkness during winter. Pine and spruce differed in the kinetics of the dephosphorylation of LHCII and D1 upon warming, suggesting the rate of dephosphorylation of LHCII and D1 may be important in the rapid component of recovery from winter stress. Finally, we demonstrated that light-dependent changes in LHII phosphorylation do not continue to occur on subzero winter days and that needles are maintained in a phosphorylation pattern consistent with the high light conditions to which those needles are exposed. Our results suggest a role for retained phosphorylation of both LHCII and D1 in maintenance of the photosynthetic machinery in a winter conformation that maximizes thermal energy dissipation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpx065 | DOI Listing |
Evolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.
View Article and Find Full Text PDFMar Environ Res
January 2025
ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal. Electronic address:
Potential effects of microplastics (MP, plastic particles <5 mm) on the levels of multiple stress biomarkers were investigated in wild fish populations of Cyprinus carpio, Mugil cephalus, Platichthys flesus captured in the Minho River estuary located in the Iberian Peninsula. Specimens were collected in March and September 2018, corresponding to the end of winter and summer, respectively. Based on the concentration of MP determined by FT-IR analysis and morphological inspection, fishes from each species were divided into two groups: ≤0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.
We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).
View Article and Find Full Text PDFSci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom.
Pressures on honey bee health have substantially increased both colony mortality and beekeepers' costs for hive management across Europe. Although technological advances could offer cost-effective solutions to these challenges, there is little research into the incentives and barriers to technological adoption by beekeepers in Europe. Our study is the first to investigate beekeepers' willingness to adopt the Bee Health Card, a molecular diagnostic tool developed within the PoshBee EU project which can rapidly assess bee health by monitoring molecular changes in bees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!