Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Adult cervical deformity (ACD) classifications have not been implemented in a prospective ACD population and in conjunction with adult spinal deformity (ASD) classifications.
Objective: To characterize cervical deformity type and malalignment with 2 classifications (Ames-ACD and Schwab-ASD).
Methods: Retrospective review of a prospective multicenter ACD database. Inclusion: patients ≥18 yr with pre- and postoperative radiographs. Patients were classified with Ames-ACD and Schwab-ASD schemes. Ames-ACD descriptors (C = cervical, CT = cervicothoracic, T = thoracic, S = coronal, CVJ = craniovertebral) and alignment modifiers (cervical sagittal vertical axis [cSVA], T1 slope minus cervical lordosis [TS-CL], modified Japanese Ortphopaedic Association [mJOA] score, horizontal gaze) were assigned. Schwab-ASD curve type stratification and modifier grades were also designated. Deformity and alignment group distributions were compared with Pearson χ2/ANOVA.
Results: Ames-ACD descriptors in 84 patients: C = 49 (58.3%), CT = 20 (23.8%), T = 9 (10.7%), S = 6 (7.1%). cSVA modifier grades differed in C, CT, and T deformities (P < .019). In C, TS-CL grade prevalence differed (P = .031). Among Ames-ACD modifiers, high (1+2) cSVA grades differed across deformities (C = 47.7%, CT = 89.5%, T = 77.8%, S = 50.0%, P = .013). Schwab-ASD curve type and presence (n = 74, T = 2, L = 6, D = 2) differed significantly in S deformities (P < .001). Higher Schwab-ASD pelvic incidence minus lumbar lordosis grades were less likely in Ames-ACD CT deformities (P = .027). Higher pelvic tilt grades were greater in high (1+2) cSVA (71.4% vs 36.0%, P = .015) and high (2+3) mJOA (24.0% vs 38.1%, P = .021) scores. Postoperatively, C and CT deformities had a trend toward lower cSVA grades, but only C deformities differed in TS-CL grade prevalence (0 = 31.3%, 1 = 12.2%, 2 = 56.1%, P = .007).
Conclusion: Cervical deformities displayed higher TS-CL grades and different cSVA grade distributions. Preoperative associations with global alignment modifiers and Ames-ACD descriptors were observed, though only cervical modifiers showed postoperative differences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/neuros/nyx175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!