Land quality, a key economic capital supporting local development, is affected by biophysical and anthropogenic factors. Taken as a relevant attribute of economic systems, land quality has shaped the territorial organization of any given region influencing localization of agriculture, industry and settlements. In regions with long-established human-landscape interactions, such as the Mediterranean basin, land quality has determined social disparities and polarization in the use of land, reflecting the action of geographical gradients based on elevation and population density. The present study investigates latent relationships within a large set of indicators profiling local communities and land quality on a fine-grained resolution scale in Italy with the aim to assess the potential impact of land quality on the regional socioeconomic structure. The importance of land quality gradients in the socioeconomic configuration of urban and rural regions was verified analyzing the distribution of 149 socioeconomic and environmental indicators organized in 5 themes and 17 research dimensions. Agriculture, income, education and labour market variables discriminate areas with high land quality from areas with low land quality. While differential land quality in peri-urban areas may reflect conflicts between competing actors, moderate (or low) quality of land in rural districts is associated with depopulation, land abandonment, subsidence agriculture, unemployment and low educational levels. We conclude that the socioeconomic profile of local communities has been influenced by land quality in a different way along urban-rural gradients. Policies integrating environmental and socioeconomic measures are required to consider land quality as a pivotal target for sustainable development. Regional planning will benefit from an in-depth understanding of place-specific relationships between local communities and the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456058 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177853 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!