Slow addition of sodium nitrite allows the in situ preparation of highly explosive diazo compounds and enables their safe and scalable application in iron catalyzed rearrangement reactions of allylic and propargylic sulfides. With catalyst loadings as low as 0.1 mol% an effective entry into α-mercapto-nitriles, α-mercapto-esters and α-trifluoromethyl-sulfides on a gram-scale is achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc02801f | DOI Listing |
Int J Mol Sci
December 2024
Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA.
Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:
Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
The cyclic structure of non-ribosomal peptides (NRPs) is critical for enhancing their stability and bioactivity, which highlights the importance of exploring NRP cyclization enzymes for natural product discovery. Thioesterases (TEs) are crucial enzymes that catalyze the formation of various lactams, including macrolactams, β-lactams, and γ-lactams; however, their potential to produce other lactam types remains largely unexplored. In this study, we identified spinactin A () and novel derivatives, spinactin B-E (-), from NRRL 18395 and characterized the biosynthetic enzymes involved, particularly a unique TE SncF, responsible for δ-lactam formation.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!