Rain streaks impair visibility of an image and introduce undesirable interference that can severely affect the performance of computer vision and image analysis systems. Rain streak removal algorithms try to recover a rain streak free background scene. In this paper, we address the problem of rain streak removal from a single image by formulating it as a layer decomposition problem, with a rain streak layer superimposed on a background layer containing the true scene content. Existing decomposition methods that address this problem employ either sparse dictionary learning methods or impose a low rank structure on the appearance of the rain streaks. While these methods can improve the overall visibility, their performance can often be unsatisfactory, for they tend to either over-smooth the background images or generate -images that still contain noticeable rain streaks. To address the problems, we propose a method that imposes priors for both the background and rain streak layers. These priors are based on Gaussian mixture models learned on small patches that can accommodate a variety of background appearances as well as the appearance of the rain streaks. Moreover, we introduce a structure residue recovery step to further separate the background residues and improve the decomposition quality. Quantitative evaluation shows our method outperforms existing methods by a large margin. We overview our method and demonstrate its effectiveness over prior work on a number of examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2017.2708841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!