This paper deals with a new anisotropic discrete dual-tree wavelet transform (ADDTWT) to characterize the anisotropy of bone texture. More specifically, we propose to extend the conventional discrete dual-tree wavelet transform (DDTWT) by using the anisotropic basis functions associated with the hyperbolic wavelet transform instead of isotropic spectrum supports. A texture classification framework is adopted to assess the performance of the proposed transform. The generalized Gaussian distribution is used to model the distribution of the sub-band coefficients. The estimated vector of parameters for each image is then used as input for the support vector machine classifier. Experiments were conducted on synthesized anisotropic fractional Brownian motion fields and on a real database composed of osteoporotic patients and control cases. Results show that the ADDTWT outperforms most of the competing anisotropic transforms with an area under curve rate of 93%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2017.2708988DOI Listing

Publication Analysis

Top Keywords

wavelet transform
16
discrete dual-tree
12
dual-tree wavelet
12
anisotropic discrete
8
anisotropic
5
transform
5
wavelet
4
transform improved
4
improved classification
4
classification trabecular
4

Similar Publications

Drought is one of the most detrimental natural calamities to the economy. Despite its significant consequences, the evolution from meteorological to agricultural and hydrological droughts still needs to be explored. A thorough investigation was carried out in India's eastern hills and plateau region to determine the extent of drought's impact through indices.

View Article and Find Full Text PDF

Motor Imagery (MI) electroencephalographic (EEG) signal classification is a pioneer research branch essential for mobility rehabilitation. This paper proposes an end-to-end hybrid deep network "Spatio Temporal Inception Transformer Network (STIT-Net)" model for MI classification. Discrete Wavelet Transform (DWT) is used to derive the alpha (8-13) Hz and beta (13-30) Hz EEG sub bands which are dominant during motor tasks to enhance the performance of the proposed work.

View Article and Find Full Text PDF

Electroencephalographic signals are obtained by amplifying and recording the brain's spontaneous biological potential using electrodes positioned on the scalp. While proven to help find changes in brain activity with a high temporal resolution, such signals are contaminated by non-stationary and frequent artefacts. A plethora of noise reduction techniques have been developed, achieving remarkable performance.

View Article and Find Full Text PDF

Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.

View Article and Find Full Text PDF

Enhancing cardiovascular disease classification in ECG spectrograms by using multi-branch CNN.

Comput Biol Med

January 2025

Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India. Electronic address:

Cardiovascular disease (CVD) is caused by the abnormal functioning of the heart which results in a high mortality rate across the globe. The accurate and early prediction of various CVDs from the electrocardiogram (ECG) is vital for the prevention of deaths caused by CVD. Artificial intelligence (AI) is used to categorize and accurately predict various CVDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!