Primary motor cortex (M1) neurons are tuned in response to several parameters related to motor control, and it was recently reported that M1 is important in feedback control. However, it remains unclear how M1 neurons encode information to control the musculoskeletal system. In this study, we examined the underlying computational mechanisms of M1 based on optimal feedback control (OFC) theory, which is a plausible hypothesis for neuromotor control. We modelled an isometric torque production task that required joint torque to be regulated and maintained at desired levels in a musculoskeletal system physically constrained by muscles, which act by pulling rather than pushing. Then, a feedback controller was computed using an optimisation approach under the constraint. In the presence of neuromotor noise, known as signal-dependent noise, the sensory feedback gain is tuned to an extrinsic motor output, such as the hand force, like a population response of M1 neurons. Moreover, a distribution of the preferred directions (PDs) of M1 neurons can be predicted via feedback gain. Therefore, we suggest that neural activity in M1 is optimised for the musculoskeletal system. Furthermore, if the feedback controller is represented in M1, OFC can describe multiple representations of M1, including not only the distribution of PDs but also the response of the neuronal population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10827-017-0650-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!