In this work, we tried to evaluate mass transfer during a combined infrared-vacuum drying of kiwifruits. Infrared radiation power (200-300 W) and system pressure (5-15 kPa), as drying parameters, are evaluated on drying characteristics of kiwifruits. Both the infrared lamp power and vacuum pressure affected the drying time of kiwifruit slices. Nine different mathematical models were evaluated for moisture ratios using nonlinear regression analysis. The results of regression analysis indicated that the quadratic model is the best to describe the drying behavior with the lowest values and highest value. Also, an increase in the power led to increase in the effective moisture diffusivity between 1.04 and 2.29 × 10 m/s. A negative effect was observed on the Δ with increasing in infrared power and with rising in infrared radiation power it was increased. Chroma values decreased during drying.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448346PMC
http://dx.doi.org/10.1002/fsn3.435DOI Listing

Publication Analysis

Top Keywords

mass transfer
8
transfer combined
8
combined infrared-vacuum
8
infrared-vacuum drying
8
kiwifruits infrared
8
infrared radiation
8
radiation power
8
regression analysis
8
drying
7
power
5

Similar Publications

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.

View Article and Find Full Text PDF

Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.

View Article and Find Full Text PDF

The disposal of waste-printed circuit boards (WPCBs) poses significant environmental and health risks, as they are a major component of e-waste containing hazardous materials. However, WPCBs also contain valuable metallic elements, making them important resources for recycling. To address the dual challenge of hazardous waste management and resource recovery, sustainable approaches for metal extraction from WPCBs are imperative.

View Article and Find Full Text PDF

Bootstrap Principle for the Spectrum and Scattering of Strings.

Phys Rev Lett

December 2024

Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA.

We show that the Veneziano amplitude of string theory is the unique solution to an analytically solvable bootstrap problem. Uniqueness follows from two assumptions: faster than power-law falloff in high-energy scattering and the existence of some infinite sequence in momentum transfer at which higher-spin exchanges cancel. The string amplitude-including the mass spectrum-is an output of this bootstrap.

View Article and Find Full Text PDF

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!