A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VEGF-A Stimulates STAT3 Activity via Nitrosylation of Myocardin to Regulate the Expression of Vascular Smooth Muscle Cell Differentiation Markers. | LitMetric

Vascular endothelial growth factor A (VEGF-A) is a pivotal player in angiogenesis. It is capable of influencing such cellular processes as tubulogenesis and vascular smooth muscle cell (VSMC) proliferation, yet very little is known about the actual signaling events that mediate VEGF-A induced VSMC phenotypic switch. In this report, we describe the identification of an intricate VEGF-A-induced signaling cascade that involves VEGFR2, STAT3, and Myocardin. We demonstrate that VEGF-A promotes VSMC proliferation via VEGFR2/STAT3-mediated upregulating the proliferation of markers like Cyclin D1 and PCNA. Specifically, VEGF-A leads to nitrosylation of Myocardin, weakens its effect on promoting the expression of contractile markers and is unable to inhibit the activation of STAT3. These observations reinforce the importance of nitric oxide and S-nitrosylation in angiogenesis and provide a mechanistic pathway for VEGF-A-induced VSMC phenotypic switch. In addition, Myocardin, GSNOR and GSNO can create a negative feedback loop to regulate the VSMC phenotypic switch. Thus, the discovery of this interactive network of signaling pathways provides novel and unexpected therapeutic targets for angiogenesis-dependent diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453982PMC
http://dx.doi.org/10.1038/s41598-017-02907-6DOI Listing

Publication Analysis

Top Keywords

vsmc phenotypic
12
phenotypic switch
12
nitrosylation myocardin
8
vascular smooth
8
smooth muscle
8
muscle cell
8
vsmc proliferation
8
vegf-a
5
vsmc
5
vegf-a stimulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!